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DYNAMICAL (TIME-HARMONIC) AXISYMMETRIC STRESS FIELD IN
THE PRE-STRETCHED NON-LINEAR ELASTIC BI-LAYERED SLAB

RESTING ON THE RIGID FOUNDATION

S.D.AKBAROV 1

Abstract. Within the framework of the piecewise homogeneous body model with the use
of the Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies the
axisymmetric dynamical stress field in the pre-stretched bi-layered slab resting on the rigid
foundation is studied. It is assumed that the normal force which is located on a point and is
time-harmonic acts on the free face plane of the slab. The elasticity relations of the layers’
materials are described by the Murnaghan potential. The numerical results referring to the
normal stress acting on the interface planes are presented for the pair of materials Aluminium
1915 and Acrylic Plastic.
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1. Introduction

A class of interesting and urgent elastodynamic problems, for which the classical linear theory
of elastic waves is not sufficient involves initially stressed bodies. Such problems have a wide
range of application in practice. For example, initial stresses occur in structural elements after
manufacturing and assembly. Initial stresses are also present in Earth’s crust due to action of
geostatic and geodynamic forces, in composites, in rocks and so on. Therefore, up to now, a
large number of theoretical and experimental investigations had been made in this field. The
systematic consideration and analyses of these results were made in [9]. The review of the recent
researches is given in the papers [2, 5, 6, 10, 12]. It follows from these reviews that almost all these
investigations were made within the framework of the Three-dimensional Linearized Theory of
Elastic Waves in Initially Stressed Bodies (TLTEWISB) and a considerable part of those refers
to the wave propagation in the layered composite materials with homogeneous initial stresses.

The study of the influence of the initial stresses on the dynamic stress-state in a homogeneous
and layered medium is of great significance, in both theoretical and practical sense. Until now
there were few studies (for example, [1, 3, 4, 7, 8, 11, 13]). In the papers [11, 13] the Lamb’s
problem for a half-space with initial stresses was considered. In [3, 4] an attempt was made to
study time-harmonic 2D Lamb’s problem for the half-plane covered with the pre-stretched layer.
In the paper [1] the investigations [3, 4] have been developed for a strip load on the covering
layer. The development of the studies [3,4] for the 3D Lamb’s problem has been made in [7].

In the foregoing investigations which regard the stress distribution in the pre-stressed body it
is assumed that the region occupied by this body is semi-infinite. Therefore the results obtained
in aforementioned investigations cannot be applied, for example, in the case where the dynamical
stress field is studied for the layered material which rests on the rigid foundation. Nor can these
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results be applied for structural elements whose basic material is covered with layered ones. If
the stiffness of the basic material (modulus of elasticity) is significantly greater than that of the
covering layers, then the basic material can be modelled as a rigid foundation. As a result of
the covering procedure the residual (initial) stresses arise in the covering layers and it is almost
inevitable to avert these stresses. Therefore under studying the dynamical stress field in such
structural members it is necessary to take the foregoing initial stresses into account.

Because of the above discussions in the present paper the investigations carried out in [1, 3, 4,
7, 8] are developed for the studying of the axisymmetric stress field in the pre-stretched bi-layered
slab resting on the rigid foundation. It is assumed that the materials of the layers are non-linear
elastic and the elasticity relations for these materials are given through the Murnaghan potential
[14]. Also, it is assumed that the time-harmonic point-located load acts on the free face plane
of the upper layer of the slab. The studies are made within the framework of the piecewise
homogeneous bodies model by the use TLTEWISB.

2. Formulation of the problem

We consider the bi-layered slab resting on the rigid foundation and assume that in the natural
state the thickness of the upper and lower layers of the slab are h1and h2 respectively. In the
natural state we determine the position of the points of the layers by the Lagrangian coordinates
in the Cartesian system of coordinates Oy1y2y3 as well as in the cylindrical system of coordinates
Orθz. We aim that the layers be stretched separately in the radial direction and each of them
the homogeneous axisymmetric (with respect to Oy3 or Oz axis) initial state appear.

With the initial state of the layers we associate the Lagrangian cylindrical system of coordi-
nates O′r′θ′z′ and Cartesian system of coordinates O′y′1y

′
2y
′
3. The values related to the upper

and lower layers are denoted by upper indices (1) and (2) respectively. Furthermore, the val-
ues related to the initial state are denoted by the upper index “0”. Thus, according to the
above-stated the initial state in the layers can be written as follows:

u(k),0
m =

(
λ(k)

m − 1
)

ym, λ(k)
m = constm, λ

(k)
1 = λ

(k)
2 ,m = 1, 2, 3, k = 1, 2, (1)

where λ
(k)
m is the elongation along the Oym axis.

It follows from (1) that

y′i = λ
(k)
i yi, r′ = λ

(k)
1 r, h′1 = λ

(1)
3 h1, h′2 = λ

(2)
3 h2. (2)

Below the values related to the system of coordinates associated with the initial state, i.e. with
Oy′1y

′
2y
′
3 are denoted by upper prime.

We investigate the axisymmetric stress field in the slab in the first variant of small initial
strains of the TLTEWISB [9]. In the considered case the homogeneous initial stresses σ

(k),0
rr =

σ
(k),0
θθ = σ(k),0 arise in the layers. The relations between σ(k),0 and λ

(k)
m are determined as follows.
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µ(k)

1(
3λ(k)

/
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) , (3)

where λ(k) and µ(k) are Lam’s constants of the materials. Thus, according to [9], we write the
basic relations of the TLTEWISB for the axisymmetrical case.

The equation of motion.

∂
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′(k)
r′r′ +
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1
r′

(
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= ρ′(k) ∂2

∂t2
u
′(k)
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∂
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The mechanical relations
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In (4) and (5) through T
′(k)
r′r′ , . . . , T

′(k)
z′z′ the perturbations of the components of Kirchoff stress

tensor are denoted, notation u
′(k)
r′ , u

′(k)
z′ shows the perturbation of the components of the dis-

placement vector. The constants ω
′(k)
1111, . . . , ω

′(k)
3333, ρ′(k) in (4), (5) are determined through the

mechanical constants of the layers’ materials and through the initial stress state. The expressions
for these constants will be given below.

In the present investigation we assume that the mechanical relations of the layers’ materials
are described by the Murnaghan potential [14], which is given as follows.
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In (6) λ(k) and µ(k) are Lam’s, a(k), b(k) and c(k) are third order elastic constants; A
(k)
1 , A

(k)
2 and

A
(k)
3 are the 1-st, 2-nd and 3-rd algebraic invariants of Green’s strain tensor respectively.
According to [9], for the considered case the expressions for ω
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×
(
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4

))
,K

(k)
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2
3
µ(k). (8)

Thus the considered dynamical stress distribution will be investigated by the use of the equations
(3)-(8). In this case we will assume that the following contact and boundary conditions are
satisfied.
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3. Method of solution

For the solution to the considered problem the following representation for the displacements
is used [9]:
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In (10), (11) the following notation is used:
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Now we consider the solution to equation (11). Because the point load is harmonic in time,
only the stationary case will be considered; all dependent variables become harmonic and can
be represented as:

{
T
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where a superimposed dash denotes the amplitude of the relevant quantity. From here on we
will omit this superimposed dash. Thus, introducing the dimensionless coordinates r′ → r′/h1,
z′ → z′/h1we obtain the following equation from (11), (13).
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For, the solution to equation (14) we use the Hankel integral presentation for the function X(k):

X(k) =
∫ ∞

0
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where J0(x) is the Bessel function of zeroth order.
Substituting (16) into (14) and doing some mathematical manipulation we obtain that for
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Denoting the roots of equations (17) through ±γ
(k)
1 , ±γ

(k)
2 we attain the following expressions

for the function X(k):

X(k) =
∫ ∞

0

[
F
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From the conditions (9) we obtain the corresponding equations for determine the unknowns
F

(k)
1 (s), ..., F (k)

4 (s) which enter (19). Thus, by employing the algorithm developed in [1, 3, 4, 7,
8], we can calculate the values of the stresses and displacements.

4. Numerical results and discussions

The following materials are selected for numerical consideration: Acrylic Plastic (shortly AP)
with properties ρ = 1.16g

/
cm3, λ = 0.4 × 104MPa, µ = 0.19 × 104MPa, a = −0.0391 ×

105MPa, b = −0.072 × 105MPa, c = −0.141 × 105MPa; Aluminium 1915 (shortly Al 1915)
with properties ρ = 2.77g

/
cm3, , µ = 2.8×104MPa, a = 0.62×105MPa, b = −0.49×105MPa,

c = −3.43 × 105MPa. These values of the mechanical constants which enter the expression of
the Murnaghan potential (6) are taken from [9].

For testing the validity of the algorithm and programmes we consider the case where the slab
consists of the single layer. Analyze the distribution of the stress σ′z′z′ on the plane between
the rigid foundation and slab. We examine the influence of the Ω (15) on this distribution.
According to the mechanical consideration, under the absence of the initial stretching of the
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slab the values of σ′z′z′ must approach the values obtained for the corresponding static problem
studied in [15] as Ω → 0.

Now we consider the comparison of the present results with the corresponding ones obtained
by the use of the integral expression given for σzz in [15] and assume that the Poisson ratio ν of
the material of the single-layer-slab is equal to 0.3 which corresponds to Al. Fig. 1 shows the
graphs of the dependencies between σ′z′z′h

2
1

/
P0 and r′/h1 (h1 being a thickness of the slab) for

various Ω. It follows from these graphs that the values of σ′z′z′h
2
1

/
P0 obtained for the dynamical

problem approach the corresponding ones obtained for the static problem as Ω → 0. This
situation holds for the correctness of the used algorithm and programmes.

We consider the influence of the initial pre-stretching of the single-layer slab on the depen-
dencies between σ′z′z′h

2
1

/
P0 (at r′/h1 = 0) and Ω. The graphs of these dependencies are given

in Fig. 2a (for Al 1915) and in Fig. 2b (for AP). It follows from these graphs that for the
considered range of the change of Ω, i.e. for 0 < Ω ≤ 1.6 the absolute values of σ′z′z′h

2
1

/
P0

increase monotonically with Ω. In this case the pre-stretching of the slab causes a decrease in
these values. Moreover it follows from these results that as a result of the influence of the third
order elastic constants the absolute values of the σ′z′z′h

2
1

/
P0 also decrease.

Now we analyze the numerical results regarding the bi-layered slab and consider the following
two cases: the case I AP (upper layer) + Al 1915 (lower layer); the case II al 1915 (upper layer)
+ AP (lower layer). Assume that h1 = h2. The graphs of the dependencies between σ′z′z′h

2
1

/
P0

(at z′ = −h′1, r′/h1 = 0) and Ω are given in Fig. 3a and 3b for the cases I and II respectively.
Note that under construction of these graphs it is assumed that the initial stretching exists only
in the upper layer of the slab. Because the various numerical investigations which are not given
here show that the influence of the pre-stretching of the lower layer the values of the considered
stress is insignificant.

Thus, it follows from the results given in Fig. 3a and Fig. 3b that the pre-stretching of the
upper layer causes a decrease in the absolute values of the normal stress acting on the interface
plane between the layers. In this case as a result of the non-linearity of the upper layer material
the absolute values of the considered stress decrease (increase) in the case I (in the case II).

In the foregoing investigations the values of the Ω are bounded by 1.4 and 1.0 for cases I and II
respectively. Because under Ω > 1.4 (Ω > 1.0) in case I (in case II) the resonance type behaviour
of the considered slab is observed. The studying of such type behaviour of the considered slab
will be subject to other investigations of the author.

Consider the distribution of the stress σ′z′z′h
2
1

/
P0 in the interface planes under Ω = 1.0. The

graphs of these distributions for case I (for case II) are given in Fig. 4a (in Fig. 4b). In
these figures the graphs denoted by numbers 1, 2 and 3 (1′, 2′ and 3′) show the distribution
of σ′z′z′h

2
1

/
P0 with respect to r′/h1 at z′ = −h′1 (at z′ = −h′1 − h′2) for σ(1),0/µ(1) = 0.008, 0.02

and 0.04 respectively. It follows from these results that the main effect of the influence of the
pre-stretching of the upper layer on the considered distribution arises in the near vicinity of the
point r′/h1 = 0 (i.e. in r′/h1 ≤ 0.4).

5. Conclusions

In the light of the discussed results the following conclusions can be drawn.
In the framework of the piecewise homogeneous body model with the use of the TLTEWISB

the axisymmetrical dynamical time-harmonic stress field in the pre-stretched bi-layered slab
resting on the rigid foundation is investigated. The elasticity relations of the layers’ materials
are described by the Murnaghan potential. Concrete numerical results are made for the pair of
materials Aluminum 1915 and Acrylic Plastic. As a result of the numerical investigations the
following conclusions are established:

-the absolute values of the interface normal stress increase monotonically with frequency of
the external point-located normal force;
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- the initial tension of the layers in the slab causes the absolute values of the interface normal
stress to decrease;

- the influence of the non-linearity of the layers’ materials depends on the location sequence
of the layers in the slab: for the location Aluminium 1915 (upper layer) + Acrylic Plastic (lower
layer) (Acrylic Plastic (upper layer) + Aluminium 1915 (lower layer)) this non-linearity causes
the absolute values of the stress to decrease (to increase). But for the single-layer slab the
nonlinearity of the considered materials causes the absolute values of the stress to decrease.
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